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What we know so far….
• Word vectors: Vectors of numbers used to encode language

• Each vector represents a point in an n-dimensional semantic space

• Simple techniques to create word vectors:
• Co-occurrence frequency (bag of words)
• TF-IDF
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Other dense embeddings
Using word embeddings
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Neural networks
Combining and optimizing 
computational units
Neural language models
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We can use these vectors to measure semantic 
similarity between words.

• Popular Approach: Cosine similarity
• Based on the dot product from linear algebra

• v " w = 	∑!"#$ 𝑣!𝑤! =	𝑣#𝑤# + 𝑣%𝑤% +⋯+ 𝑣$𝑤$
• Intuition:

• Similar vectors (e.g., large values in the same dimensions) will have 
high cosine similarity

• Dissimilar vectors (e.g., zeros or low values in different dimensions) 
will have low cosine similarity

• We compute a normalized dot product to avoid issues 
related to word frequency

• Non-normalized dot product will be higher for frequent words, 
regardless of how similar they are

• We normalize by dividing the dot product by the lengths of the two 
vectors
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Normalized Dot 
Product = Cosine 
Similarity

• The cosine similarity metrics between two vectors v and w can thus be computed 
as:

• cosine v,w = v!w
v |w|

= ∑!"#
$ $!%!

∑!"#
$ $!

% ∑!"#
$ %!

%

• This value ranges between:
•  0 (dissimilar) and 1 (similar) for frequency or TF-IDF vectors
• -1 (dissimilar) and 1 (similar) for embedding vectors that may have negative values
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!",$," % &,'($",''"&
!!"!)$!)"! &!)'($"!)''"&!
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017

cos(digital, information) = &∗&)+,$'∗'($")+,-.∗''"&
&!)+,$'!)+,-.! &!)'($"!)''"&!

= 0.996
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Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017

cos(digital, information) = &∗&)+,$'∗'($")+,-.∗''"&
&!)+,$'!)+,-.! &!)'($"!)''"&!

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
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Limitations 
of Bag-of-
Words 
Style 
Vectors

• Very high-dimensional
• Lots of empty (zero-valued) cells
• Struggle with inferring deeper semantic 

content:
• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts
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What 
would our 
“dream 
vector” 
look like?



Enter Word2Vec….

• Word2Vec: A method for 
automatically learning 
dense word 
representations from large 
text corpora

• Fast
• Efficient to train
• Non-contextual 

(homonyms have the 
same representations)
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Word2Vec

• Technically a tool for implementing word 
vectors: 

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to 

as Word2Vec is the skip-gram model with 
negative sampling
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https://code.google.com/archive/p/word2vec


Word2Vec Intuition
• Instead of counting how often each word occurs near each 

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task 

as our word embeddings
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None of this 
requires 
manual 
supervision.



What does the 
classification task 
look like? 

• Goal: Train a classifier that, given a tuple (t, c) of 
a target word t paired with a context word c (e.g., 
(super, bowl) or (super, laminator)), will return the 
probability that c is a real context word

• P(+ | t,c)
• Context is defined by our context window (in this 

case, ± 2 words)
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this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4



High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

super bowl
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

super bowl

super very
super fork

super calendar
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹
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High-Level 
Overview: 

How 
Word2Vec 

Works

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Train a classifier to 
distinguish between those 
two cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3
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0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level 
Overview: 

How 
Word2Vec 

Works

• Represent all words in a 
vocabulary as a vector

• Treat the target word w 
and a neighboring context 
word c as positive 
samples

• Randomly sample other 
words in the lexicon to get 
negative samples

• Find the similarity for each 
(t,c) pair and use this to 
calculate P(+|(t,c))

• Train a classifier to 
maximize these 
probabilities to distinguish 
between positive and 
negative cases

• Use the weights from that 
classifier as the word 
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0
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How do we compute 
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot 

product between two vectors
• Similarity(t,c) ∝ 𝑡 # 𝑐

• More similar vectors → more likely that c occurs near t
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A dot 
product 
gives us a 
number, 
not a 
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did 

with logistic regression!)
• We can set:

• P(+|t,c) = +
+,-&'()

• Then:
• P(+ | t,c) = +

+,-&'()

• P(- | t,c) = 1 - P(+ | t,c) = -&'()

+,-&'()

27



What if we want to 
know the probability 
that a span of text 
occurs in the context 
of the target word?

• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏./+
0 +

+,-&'()!
, or

• log P(+|t,c1:k) = ∑./+0 log +
+,-&'()!

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = *
*+,!"#$

P(-|t,c) = ,!"#$

*+,!"#$
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With this in 
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how 
similar the context window is to the target word

• However, we still have some unanswered questions….
• How do we determine our input vectors? 
• How do we learn word embeddings throughout this process (this is the real 

goal of training our classifier in the first place)?

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super, 
watch) = .7

P(+|
super, 
the) = 

.5

P(+|super, 
bowl) = .9

P(+|
super 
at) = 

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575
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Input Vectors

• Typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position 

corresponding to a given word, and a “0” in every other 
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl
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Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts 
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 	𝜎 𝑧 = &

&'(&'
= &

&'(&()*+,

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = &

&'(&-).
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What does this look like?

super

Start with an input t
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What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r
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What does this look like?

…

Feed it into a layer of n units 
(where n is the desired 
embedding size), each of 
which computes a weighted 
sum of inputs0

0

1

…

0

su
pe

r
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What does this look like?

…

Feed the outputs from those 
units into a final unit that 
predicts whether a word c is 
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r
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What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output 
units for every possible c

0

0

1

…

0

su
pe

r
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate 
layer applies a specific 
weight to each input it 
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$
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Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot 
vectors, this means we’ll end 
up with a specific set of 
weights (one for each unit) 
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
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These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6
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How do we optimize these 
weights over time?

• Weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the 

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar 

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time
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Since we initialize 
our weights 
randomly, the 
classifier’s first 
prediction will 
almost certainly be 
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and 
c1 so if we tried to make these predictions 
again, we’d have lower error values
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However, the error 
values from our 
incorrect guesses 
are what allow us 
to improve our 
embeddings over 
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4
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What is our 
training data?

• We assume that all occurrences of words in similar contexts in our training corpus are 
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
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What is our 
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝:(𝑤), 

where 𝛼 is a weight:
• 𝑝%(𝑤) = count(')!

∑"# count('#)!	

• Often, 𝛼 = 0.75 to give rarer noise words slightly higher probability of 
being randomly sampled

• Randomly select noise words according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples
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Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from positive 
examples

• Minimize the vector similarity of the (target, context) pairs drawn from negative 
examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function
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What if we want to predict a target word 
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!
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• Small datasets
• Rare words and phrases

In general, skip-gram 
embeddings are good with:

• Larger datasets (faster to train)
• Frequent words

CBOW embeddings are 
good with:



This 
Week’s 
Topics
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Thursday

Neural networks
Combining and optimizing 
computational units
Neural language models



Are there any 
other variations 

of Word2Vec?

• fastText
• An extension of Word2Vec that also 

incorporates subwords
• Designed to better handle unknown 

words and sparsity in language
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fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +
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fastText
• Skip-gram embedding is learned for each constituent 

n-gram
• Word is represented by the sum of all embeddings of 

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown 

words based on subword constituents alone

Source code available online: 
https://fasttext.cc/
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Other Types of Dense Word 
Embeddings

• Word2Vec is an example of a 
predictive word embedding model

• Learns to predict whether 
words belong in a target word’s 
context

• Other models are count-based
• Remember co-occurrence 

matrices?
• GloVE combines aspects of both 

predictive and count-based models

Natalie Parde - UIC CS 421
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Global Vectors 
for Word 
Representation 
(GloVe)

• Co-occurrence matrices quickly grow 
extremely large

• GloVe learns to predict weights in a lower-
dimensional space that correspond to the co-
occurrence probabilities between words

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Weighting function:

𝑓 𝑋-/ = *(
𝑋-/
𝑥012

)3 , 𝑋-/ < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/ 	)6
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/ 	)6

Minimize the cost function to 
learn ideal embedding values 
for wi and wj
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How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context 
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/ 	)6

Minimize the cost function to 
learn ideal embedding values 
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3
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Why does 
GloVe 
work?

• Ratios of co-occurrence probabilities have the 
potential to encode word similarities and 
differences

• These similarities and differences are useful 
components of meaning

• GloVe embeddings perform particularly 
well on analogy tasks

Natalie Parde - UIC CS 421
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Which is better …Word2Vec or 
GloVe?
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)
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This 
Week’s 
Topics
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Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing 
computational units
Neural language models



Evaluating Vector 
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP task, and see 
whether and how this changes performance relative to a 
baseline model

• Most important evaluation metric for word embeddings!
• Word embeddings are rarely needed in isolation
• They are almost solely used to boost performance in 

downstream tasks

• Intrinsic Evaluation
• Performance at predicting:

• Word similarity
• Text similarity
• Analogy
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Evaluating Performance at 
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the 

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d) 
correlated
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Analogy

• We can capture relational meanings in 
word embeddings by computing the offsets 
between values in the same columns for 
different vectors

• Famous examples (Mikolov et al., 2013; 
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome
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Context window size influences 
what you learn!

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of 

speech
• Longer context window → more topical representations

• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g., 
diner and eats, rather than spoon and fork)
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Word embeddings have 
many practical applications. • Features for text 

classification tasks
• Representations for 

computational social 
science studies

• Studying word 
meaning over time

• Studying implicit 
associations 
between words
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Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding 
spaces, each using only texts 
from a specific historical period

Useful corpora:
Project Gutenberg: https://gutenberg.org
Corpus of Historical American English: 
https://www.english-corpora.org/coha/

Natalie Parde - UIC CS 421 69

https://gutenberg.org/
https://www.english-corpora.org/coha/


Unfortunately, word embeddings 
can also end up reproducing 
implicit biases and stereotypes 
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora 

also produce:
• man - computer programmer + woman = 

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications 
(e.g., CV/resume scoring models)
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Bias and 
Embeddings

• Caliskan et al. (2017) identified known, harmful 
implicit associations in GloVe embeddings
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African-American 
Names

European-American 
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common 
among Older Adults

Names Common 
among Younger Adults

Unpleasantness



How do we keep the useful associations 
present in word embeddings, but get rid of 
the harmful ones?

• Recent research has begun examining ways to 
debias word embeddings by:

• Transforming embedding spaces to remove 
gender stereotypes but preserve definitional 
gender

• Changing training procedures to eliminate these 
issues before they arise

• Increasingly active area of study:
• https://facctconference.org
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Summary: 
Word 

Embeddings

N
atalie Parde - U

IC
 C

S 421

• Cosine similarity, commonly used to calculate word vector similarity, 
measures the distance between vectors by computing the normalized 
dot product between them

• Word2Vec is a predictive word embedding approach that learns word 
representations by training a classifier to predict whether a context 
word should be associated with a given target word

• GloVe is a count-based word embedding approach that learns an 
optimized, lower-dimensional version of a co-occurrence matrix

• Word embeddings can be evaluated through their incorporation in 
other language tasks, and they can be used to model syntactic and 
semantic properties of language over time

• Word embeddings may reflect the same biases found in the data used 
to train them

73



This 
Week’s 
Topics
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Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing 
computational units
Neural language models



Now that we 
have more 
advanced word 
embeddings….



Are neural networks new?
1943: First 

mathematical 
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward network 

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, 
Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a 
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
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Why haven’t 
they been a 
big deal until 
recently 
then?

• Data

• Computing power
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There are many 
types of neural 
networks!



Feedforward 
Neural 
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in 
the last layer are hidden from external 
viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value
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Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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People often refer to multi-layer neural 
networks as “deep learning.”

Input Output
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Neural 
networks tend 

to be more 
powerful than 
feature-based 

classifiers.

• Classification algorithms like naïve Bayes 
and logistic regression assume that data is 
linearly separable

• In contrast, neural networks learn nonlinear 
ways to separate the data
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Neural 
networks 
aren’t 
necessarily 
the best 
classifier 
for all 
tasks!

Learning features implicitly 
requires a lot of data

In general, deeper network → 
more data needed

Neural nets tend to work very well 
for large-scale problems, but not 
as well for small-scale problems
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How do you build 
a neural network?

89



Building 
Blocks for 

Neural 
Networks

• Neural networks are comprised of 
computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥>, … , 𝑥?, a unit has a set of corresponding 
weights 𝑤>, … , 𝑤? and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 +	∑@𝑤@𝑥@
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Sound 
familiar?

• This is exactly the same sort of weighted 
sum of inputs that we needed to find with 
logistic regression!

• Recall that we can also represent the 
weighted sum 𝑧 using vector notation:

• 𝐳 = 𝐰 - 𝐱 + 𝑏
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Computational 
Units

• Neural networks apply nonlinear 
functions referred to as activations to 
the weighted sum of inputs

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression
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Computational Unit with Sigmoid 
Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒78.:; = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒78.:; = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Other Popular Activation Functions

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions
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Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = F!GF"!

F!HF"!

• Larger derivatives → generally faster 
convergence
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒< − 𝑒7<

𝑒< + 𝑒7<

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒8.:; − 𝑒78.:;

𝑒8.:; + 𝑒78.:; = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒8.:; − 𝑒78.:;

𝑒8.:; + 𝑒78.:; = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Comparing 
sigmoid, 
tanh, and 
ReLU
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This 
Week’s 
Topics
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Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing 
computational units
Neural language models



Combining 
Computational Units
• Neural networks are powerful 

primarily because they can combine 
multiple computational units into 
larger networks

• Many problems cannot be solved 
using a single computational unit

• Example: XOR
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AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0



AND and OR can 
both be solved 
using a single 
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value 
based on whether the product of its inputs and 
associated weights surpasses a threshold

𝑦 = 	 Q0, if	𝑤 S 𝑥 + 𝑏 ≤ 0
1, if	𝑤 S 𝑥 + 𝑏 > 0
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 -1
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 0
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However, it’s 
impossible to 
compute XOR using 
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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The only successful way to compute XOR is by 
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

ReLU
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Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable

x1
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1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1
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Feedforward 
Network

• Final formulation for previous network:
• h = ReLU 𝑊x + 𝐛
• 𝑦′ = ReLU 𝑈h + 𝐛

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
inputs
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We can 
generalize 

this for 
networks 

with > 2 
layers.

• Let W[n] be the weight matrix for layer n, b[n] 
be the bias vector for layer n, and so forth

• Let 𝑔(-) be any activation function
• Let a[n] be the output from layer n, and z[n] 

be the combination of weights and biases 
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]
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Neural 
Network: 
Formal 
Structure

• With this representation, a two-layer network 
becomes:

• 𝑧[>] = 𝑊[>]𝑎[X] + 𝑏[>]

• 𝑎[>] = 𝑔 > 𝑧 >

• 𝑧[Y] = 𝑊[Y]𝑎[>] + 𝑏[Y]

• 𝑎[Y] = 𝑔 Y (𝑧 Y )
• 𝑦Z =	𝑎[Y]

• We can easily generalize to networks with 
more layers:

• For i in 1..n
• 𝑧[@] = 𝑊[@]𝑎[@G>] + 𝑏[@]

• 𝑎[@] = 𝑔 @ (𝑧 @ )
• 𝑦Z =	𝑎[?]
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How do we train neural 
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers
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How do we train neural 
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Cross-entropy loss
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

Gradient descent
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How do we train neural 
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the 

network’s intermediate layers

???
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Backpropagation

• Propagates loss values all the way back to the 
beginning of a neural network, even though it’s 
only computed at the end of the network

• Why is this necessary?
• Simply taking the derivative like we did for 

logistic regression only provides the 
gradient for the most recent (i.e., last) 
weight layer

• What we need is a way to:
• Compute the derivative with respect to 

weight parameters occurring earlier in 
the network as well

• Even though we can only compute loss 
at a single point (the end of the 
network)
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Backpropagation 
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using 

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with 
respect to v(x)

• Find the derivative of v(x) with 
respect to x

• Multiply the two together
• 9:
9;
= 9<

9=
∗ 9=
9;

• Update weights at each layer based on 
this information
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General Tips for 
Improving Neural 
Network Performance
• Initialize weights with small random numbers
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function
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Fortunately, you shouldn’t need to build 
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J
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This 
Week’s 
Topics
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Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing 
computational units
Neural language models



Neural 
Language 

Models

• Popular application of neural networks
• Advantages over n-gram language models:

• Can handle longer histories
• Can generalize over contexts of similar 

words
• Disadvantage:

• Slower to train
• Neural language models make more 

accurate predictions than n-gram language 
models trained on datasets of similar sizes
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Feedforward 
Neural 
Language 
Model

• Input: Representation of some number of 
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible 

next words
• Goal: Approximate the probability of a word 

given the entire prior context 𝑃(𝑤[|𝑤>[G>) 
based on the n previous words

• 𝑃(𝑤[|𝑤>[G>) ≈ 𝑃(𝑤[|𝑤[G?H>[G> )
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Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)
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Neural Language Model
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Neural Language Model

h1

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

152



Neural Language Model

h1

h2
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Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

154



Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

softmax 
distribution over 
all words in the 
vocabulary
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Summary: 
Feedforward 
Neural 
Networks

• Neural networks are classification models that 
implicitly learn sophisticated feature 
representations

• Feedforward neural networks are 
comprised of interconnected layers of 
computing units through which information is 
passed forward from one layer to the next

• An activation function is a non-linear 
function applied to the weighted sum of inputs 
for a computing unit

• Computing units can be combined with 
another to solve complex tasks

• Loss can be propagated backward through 
the network from the output layer to earlier 
layers using backpropagation

• Network architectures can be optimized via a 
fine-tuning process

• Neural networks can be used to build neural 
language models
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