
Word Embeddings and
Feedforward Neural
Networks
Natalie Parde

UIC CS 421

What we know so far….
• Word vectors: Vectors of numbers used to encode language

• Each vector represents a point in an n-dimensional semantic space

• Simple techniques to create word vectors:
• Co-occurrence frequency (bag of words)
• TF-IDF

1 0 0 1 0 1 1 0 0 1 0.7 0 0 0 0 0.9 0.1 0 0 0.5

Natalie Parde - UIC CS 421 2

This
Week’s
Topics

Natalie Parde - UIC CS 421 3

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

This
Week’s
Topics

Natalie Parde - UIC CS 421 4

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

We can use these vectors to measure semantic
similarity between words.

• Popular Approach: Cosine similarity
• Based on the dot product from linear algebra

• v " w = 	∑!"#$ 𝑣!𝑤! =	𝑣#𝑤# + 𝑣%𝑤% +⋯+ 𝑣$𝑤$
• Intuition:

• Similar vectors (e.g., large values in the same dimensions) will have
high cosine similarity

• Dissimilar vectors (e.g., zeros or low values in different dimensions)
will have low cosine similarity

• We compute a normalized dot product to avoid issues
related to word frequency

• Non-normalized dot product will be higher for frequent words,
regardless of how similar they are

• We normalize by dividing the dot product by the lengths of the two
vectors

Natalie Parde - UIC CS 421 5

Normalized Dot
Product = Cosine
Similarity

• The cosine similarity metrics between two vectors v and w can thus be computed
as:

• cosine v,w = v!w
v |w|

= ∑!"#
$ $!%!

∑!"#
$ $!

% ∑!"#
$ %!

%

• This value ranges between:
• 0 (dissimilar) and 1 (similar) for frequency or TF-IDF vectors
• -1 (dissimilar) and 1 (similar) for embedding vectors that may have negative values

Natalie Parde - UIC CS 421 6

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = ?

Natalie Parde - UIC CS 421 7

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!",$," % &,'($",''"&
!!"!)$!)"! &!)'($"!)''"&!

Natalie Parde - UIC CS 421 8

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

Natalie Parde - UIC CS 421 9

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017

Natalie Parde - UIC CS 421 10

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017

cos(digital, information) = &∗&)+,$'∗'($")+,-.∗''"&
&!)+,$'!)+,-.! &!)'($"!)''"&!

= 0.996

Natalie Parde - UIC CS 421 11

Example: Computing Cosine Similarity
glitter data computer

unicorn 442 8 2
digital 5 1683 1670
information 5 3982 3325

cos(unicorn, information) = !!"∗&)$∗'($")"∗''"&
!!"!)$!)"! &!)'($"!)''"&!

= 0.017

cos(digital, information) = &∗&)+,$'∗'($")+,-.∗''"&
&!)+,$'!)+,-.! &!)'($"!)''"&!

= 0.996

Result: information is way closer to digital than it is to unicorn!0101
Natalie Parde - UIC CS 421 12

This
Week’s
Topics

Natalie Parde - UIC CS 421 13

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Limitations
of Bag-of-
Words
Style
Vectors

• Very high-dimensional
• Lots of empty (zero-valued) cells
• Struggle with inferring deeper semantic

content:
• Synonyms
• Antonyms
• Positive/negative connotations
• Related contexts

Natalie Parde - UIC CS 421 14

What
would our
“dream
vector”
look like?

Enter Word2Vec….

• Word2Vec: A method for
automatically learning
dense word
representations from large
text corpora

• Fast
• Efficient to train
• Non-contextual

(homonyms have the
same representations)

Natalie Parde - UIC CS 421 16

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

bank 1.2 2.1 3.2 4.3 1.3 2.4 5.2 1.3 2.3

Word2Vec

• Technically a tool for implementing word
vectors:

• https://code.google.com/archive/p/word2vec
• The algorithm that people usually refer to

as Word2Vec is the skip-gram model with
negative sampling

Natalie Parde - UIC CS 421 17

https://code.google.com/archive/p/word2vec

Word2Vec Intuition
• Instead of counting how often each word occurs near each

context word, train a classifier on a binary prediction task
• Is word w likely to occur near context word c?

• The twist: We don’t actually care about the classifier!
• We use the learned classifier weights from this prediction task

as our word embeddings

Natalie Parde - UIC CS 421 18

None of this
requires
manual
supervision.

What does the
classification task
look like?

• Goal: Train a classifier that, given a tuple (t, c) of
a target word t paired with a context word c (e.g.,
(super, bowl) or (super, laminator)), will return the
probability that c is a real context word

• P(+ | t,c)
• Context is defined by our context window (in this

case, ± 2 words)

Natalie Parde - UIC CS 421 20

this sunday, watch the super bowl at 5:30 p.m.

c1 c2 t c3 c4

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

super bowl

Natalie Parde - UIC CS 421 21

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

super bowl

super very
super fork

super calendar

Natalie Parde - UIC CS 421 22

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

Natalie Parde - UIC CS 421 23

High-Level
Overview:

How
Word2Vec

Works

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Train a classifier to
distinguish between those
two cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

Natalie Parde - UIC CS 421 24

0 1 0 0 0
0 1 06 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

High-Level
Overview:

How
Word2Vec

Works

• Represent all words in a
vocabulary as a vector

• Treat the target word w
and a neighboring context
word c as positive
samples

• Randomly sample other
words in the lexicon to get
negative samples

• Find the similarity for each
(t,c) pair and use this to
calculate P(+|(t,c))

• Train a classifier to
maximize these
probabilities to distinguish
between positive and
negative cases

• Use the weights from that
classifier as the word
embeddings

super bowl

super very
super fork

super calendar

?super fork
🙂

☹

super 0.1 0.5 0.1 0.3

0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

Natalie Parde - UIC CS 421

0 0 1 0 0

25

How do we compute
P(+ | t,c)?

• This is based on vector similarity
• We can assume that vector similarity is proportional to the dot

product between two vectors
• Similarity(t,c) ∝ 𝑡 # 𝑐

• More similar vectors → more likely that c occurs near t

Natalie Parde - UIC CS 421 26

A dot
product
gives us a
number,
not a
probability.

• How do we turn it into a probability?
• Sigmoid function (just like we did

with logistic regression!)
• We can set:

• P(+|t,c) = +
+,-&'()

• Then:
• P(+ | t,c) = +

+,-&'()

• P(- | t,c) = 1 - P(+ | t,c) = -&'()

+,-&'()

27

What if we want to
know the probability
that a span of text
occurs in the context
of the target word?

• Simplifying assumption: All context words are independent
• So, we can just multiply their probabilities:

• P(+|t,c1:k) = ∏./+
0 +

+,-&'()!
, or

• log P(+|t,c1:k) = ∑./+0 log +
+,-&'()!

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|t,c) = *
*+,!"#$

P(-|t,c) = ,!"#$

*+,!"#$

Natalie Parde - UIC CS 421 28

With this in
mind….

• Given t and a context window of k words c1:k, we can assign a probability based on how
similar the context window is to the target word

• However, we still have some unanswered questions….
• How do we determine our input vectors?
• How do we learn word embeddings throughout this process (this is the real

goal of training our classifier in the first place)?

this sunday, watch the super bowl at 5:30 p.m.
c1 c2 t c3 c4

P(+|super,
watch) = .7

P(+|
super,
the) =

.5

P(+|super,
bowl) = .9

P(+|
super
at) =

.5

P(+|t,c1:k) = .7 * .5 * .9 * .5 = .1575

Natalie Parde - UIC CS 421 29

Input Vectors

• Typically represented as one-hot vectors
• Binary bag-of-words approach: Place a “1” in the position

corresponding to a given word, and a “0” in every other
position

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
super bowl

Natalie Parde - UIC CS 421 30

Learned Embeddings….

• Embeddings are the weights learned for a two-layer classifier that predicts
P(+ | t,c)

• Recall from our discussion of logistic regression:
• 𝑦 = 	𝜎 𝑧 = &

&'(&'
= &

&'(&()*+,

• This is quite similar to the probability we’re trying to optimize:
• P(+ | t,c) = &

&'(&-).

Natalie Parde - UIC CS 421 31

What does this look like?

super

Start with an input t

Natalie Parde - UIC CS 421 32

What does this look like?

0

0

1

…

0

Get the one-hot vector for t

su
pe

r

Natalie Parde - UIC CS 421 33

What does this look like?

…

Feed it into a layer of n units
(where n is the desired
embedding size), each of
which computes a weighted
sum of inputs0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 34

What does this look like?

…

Feed the outputs from those
units into a final unit that
predicts whether a word c is
a valid context for t

P(+ | t,c)

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 35

What does this look like?

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)
Create one of those output
units for every possible c

0

0

1

…

0

su
pe

r

Natalie Parde - UIC CS 421 36

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Each unit in the intermediate
layer applies a specific
weight to each input it
receives

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤# +⋯+ 0 ∗ 𝑤$

Natalie Parde - UIC CS 421 37

Behind the scenes….

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Since our inputs are one-hot
vectors, this means we’ll end
up with a specific set of
weights (one for each unit)
for each input word

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤!# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤"# +⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 𝑤$# +⋯+ 0 ∗ 𝑤$
Natalie Parde - UIC CS 421 38

These are the weights we’re interested in!

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.1 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.7 + ⋯+ 0 ∗ 𝑤$

𝑧 = 0 ∗ 𝑤! + 0 ∗ 𝑤" + 1 ∗ 0.8 + ⋯+ 0 ∗ 𝑤$

P(+|pumpkin, spice)

P(+|pumpkin, elephant)

…

Word w1 w2 … wn

calendar .2 .5 … .9

coffee .3 .3 … .8

super .1 .7 … .8

… … … … …

globe .4 .9 … .6

Natalie Parde - UIC CS 421 39

How do we optimize these
weights over time?

• Weights are initialized to some random value for each word
• They are then iteratively updated to be more similar for words that occur in similar contexts in the

training set, and less similar for words that do not
• Specifically, we want to find weights that maximize P(+|t,c) for words that occur in similar

contexts and minimize P(+|t,c) for words that do not, given the information we have at the time

Natalie Parde - UIC CS 421 40

Since we initialize
our weights
randomly, the
classifier’s first
prediction will
almost certainly be
wrong.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0

Natalie Parde - UIC CS 421 41

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Natalie Parde - UIC CS 421 42

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.9
Actual: 0
Error: -0.9

Adjust the embeddings (weights) for t and
c1 so if we tried to make these predictions
again, we’d have lower error values

Natalie Parde - UIC CS 421 43

However, the error
values from our
incorrect guesses
are what allow us
to improve our
embeddings over
time.

…

P(+ | t,c3)

…

P(+ | t,c2)

P(+ | t,c1)

P(+ | t,c4)

P(+ | t,cn)

0

0

1

…

0

su
pe

r

Predicted: 0.4
Actual: 0
Error: -0.4

Natalie Parde - UIC CS 421 44

What is our
training data?

• We assume that all occurrences of words in similar contexts in our training corpus are
positive samples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 45

What is our
training data?

• However, we also need negative samples!
• In fact, Word2Vec uses more negative than positive samples (the exact ratio can vary)
• We need to create our own negative examples

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples

Natalie Parde - UIC CS 421 46

What is our
training data?

• How to create negative examples?
• Target word + “noise” word that is sampled from the training set
• Noise words are chosen according to their weighted unigram frequency 𝑝:(𝑤),

where 𝛼 is a weight:
• 𝑝%(𝑤) = count(')!

∑"# count('#)!	

• Often, 𝛼 = 0.75 to give rarer noise words slightly higher probability of
being randomly sampled

• Randomly select noise words according to weighted unigram frequency

this sunday, watch the super bowl at 5:30

c1 c2 t c3 c4

t c
super watch
super the
super bowl
super at

Positive Examples
t c
super calendar
super exam
super loud
super bread
super cellphone
super enemy
super penguin
super drive

Negative Examples

Natalie Parde - UIC CS 421 47

Learning Skip-Gram Embeddings
• The model uses these positive and negative samples to:

• Maximize the vector similarity of the (target, context) pairs drawn from positive
examples

• Minimize the vector similarity of the (target, context) pairs drawn from negative
examples

• Parameters (target and context weight vectors) are fine-tuned by:
• Applying stochastic gradient descent
• Optimizing a cross-entropy loss function

Natalie Parde - UIC CS 421 48

What if we want to predict a target word
from a set of context words instead?

• Continuous Bag of Words (CBOW)
• Another variation of Word2Vec

• Very similar to skip-gram model!

Natalie Parde - UIC CS 421 49

• Small datasets
• Rare words and phrases

In general, skip-gram
embeddings are good with:

• Larger datasets (faster to train)
• Frequent words

CBOW embeddings are
good with:

This
Week’s
Topics

Natalie Parde - UIC CS 421 50

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Are there any
other variations

of Word2Vec?

• fastText
• An extension of Word2Vec that also

incorporates subwords
• Designed to better handle unknown

words and sparsity in language

Natalie Parde - UIC CS 421 51

fastText
• Each word is represented as:

• Itself
• A bag of constituent n-grams

super <super> <su, sup, upe, per, er>= +

Natalie Parde - UIC CS 421 52

fastText
• Skip-gram embedding is learned for each constituent

n-gram
• Word is represented by the sum of all embeddings of

its constituent n-grams

• Key advantage of this extension?
• Allows embeddings to be predicted for unknown

words based on subword constituents alone

Source code available online:
https://fasttext.cc/

Natalie Parde - UIC CS 421 53

https://fasttext.cc/

Other Types of Dense Word
Embeddings

• Word2Vec is an example of a
predictive word embedding model

• Learns to predict whether
words belong in a target word’s
context

• Other models are count-based
• Remember co-occurrence

matrices?
• GloVE combines aspects of both

predictive and count-based models

Natalie Parde - UIC CS 421
54

Global Vectors
for Word
Representation
(GloVe)

• Co-occurrence matrices quickly grow
extremely large

• GloVe learns to predict weights in a lower-
dimensional space that correspond to the co-
occurrence probabilities between words

• Why is this useful?
• Predictive models → black box

• They work, but why?
• GloVe models are easier to interpret

Natalie Parde - UIC CS 421 55

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Natalie Parde - UIC CS 421 56

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Vector for ti Vector for cj

Scaler biases for ti and cj

Co-occurrence count for ticj

Natalie Parde - UIC CS 421 57

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Weighting function:

𝑓 𝑋-/ = *(
𝑋-/
𝑥012

)3 , 𝑋-/ < 𝑋𝑀𝐴𝑋

1, 	 otherwise

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/)6

Natalie Parde - UIC CS 421 58

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/)6

Minimize the cost function to
learn ideal embedding values
for wi and wj

Natalie Parde - UIC CS 421 59

How does GloVe work?
c1 … cn

t1 123 … 456
… … … …
tn 0 … 789

Build a huge word-context
co-occurrence matrix

Define soft constraints for each word pair 𝑤-.𝑤/ + 𝑏- + 𝑏/ = log𝑋-/

Define a cost function
𝐽 = 	<

-4*

5

<
/4*

5

𝑓(𝑋-/)(𝑤-.𝑤/ + 𝑏- + 𝑏/ − log𝑋-/)6

Minimize the cost function to
learn ideal embedding values
for wi and wj

0.4 0.7 1.2 4.3 0.9 6.7 1.3 0.5 0.7 5.3

Natalie Parde - UIC CS 421 60

Why does
GloVe
work?

• Ratios of co-occurrence probabilities have the
potential to encode word similarities and
differences

• These similarities and differences are useful
components of meaning

• GloVe embeddings perform particularly
well on analogy tasks

Natalie Parde - UIC CS 421
61

Which is better …Word2Vec or
GloVe?
• In general, Word2Vec and GloVe produce similar embeddings
• Word2Vec → slower to train but less memory intensive
• GloVe → faster to train but more memory intensive
• Word2Vec and Glove both produce context-independent embeddings
• Contextual embeddings:

• ELMo (Peters et al., 2018; https://www.aclweb.org/anthology/N18-1202/)
• BERT (Devlin et al., 2019; https://www.aclweb.org/anthology/N19-1423/)

Natalie Parde - UIC CS 421 62

https://www.aclweb.org/anthology/N18-1202/
https://www.aclweb.org/anthology/N19-1423/

This
Week’s
Topics

Natalie Parde - UIC CS 421 63

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Evaluating Vector
Models
• Extrinsic Evaluation

• Add the vectors as features in a downstream NLP task, and see
whether and how this changes performance relative to a
baseline model

• Most important evaluation metric for word embeddings!
• Word embeddings are rarely needed in isolation
• They are almost solely used to boost performance in

downstream tasks

• Intrinsic Evaluation
• Performance at predicting:

• Word similarity
• Text similarity
• Analogy

Natalie Parde - UIC CS 421 64

Evaluating Performance at
Predicting Word Similarity
• Compute the cosine similarity between vectors for pairs of words
• Compute the correlation between those similarity scores and word similarity ratings for the

same pairs of words manually assigned by humans
• Corpora for doing this:

• WordSim-353
• SimLex-999
• TOEFL Dataset

• Levied is closest in meaning to: (a) imposed, (b) believed, (c) requested, (d)
correlated

Natalie Parde - UIC CS 421 65

Analogy

• We can capture relational meanings in
word embeddings by computing the offsets
between values in the same columns for
different vectors

• Famous examples (Mikolov et al., 2013;
Levy and Goldberg, 2014):

• king - man + woman = queen
• Paris - France + Italy = Rome

Natalie Parde - UIC CS 421 66

Context window size influences
what you learn!

• Shorter context window → more syntactic representations
• Information is from immediately nearby words
• Most similar words tend to be semantically similar words with the same parts of

speech
• Longer context window → more topical representations

• Information can come from longer-distance dependencies
• Most similar words tend to be topically related, but not necessarily similar (e.g.,
diner and eats, rather than spoon and fork)

Natalie Parde - UIC CS 421 67

Word embeddings have
many practical applications. • Features for text

classification tasks
• Representations for

computational social
science studies

• Studying word
meaning over time

• Studying implicit
associations
between words

Natalie Parde - UIC CS 421 68

Embeddings and Historical Semantics

broadcast (1850s)

broadcast (1900s)

broadcast (1990s)

spread

sow
seed

sows
scatter

circulated

newspapers

television

radiobbc

Compute multiple embedding
spaces, each using only texts
from a specific historical period

Useful corpora:
Project Gutenberg: https://gutenberg.org
Corpus of Historical American English:
https://www.english-corpora.org/coha/

Natalie Parde - UIC CS 421 69

https://gutenberg.org/
https://www.english-corpora.org/coha/

Unfortunately, word embeddings
can also end up reproducing
implicit biases and stereotypes
latent in text.

• Recall: king - man + woman = queen
• Word embeddings trained on news corpora

also produce:
• man - computer programmer + woman =

homemaker
• doctor - father + mother = nurse

• Very problematic for real-world applications
(e.g., CV/resume scoring models)

Natalie Parde - UIC CS 421 70

Bias and
Embeddings

• Caliskan et al. (2017) identified known, harmful
implicit associations in GloVe embeddings

Natalie Parde - UIC CS 421 71

African-American
Names

European-American
Names

Unpleasantness

Male Names Female Names

Mathematics

Male Names

Arts

Female Names

Names Common
among Older Adults

Names Common
among Younger Adults

Unpleasantness

How do we keep the useful associations
present in word embeddings, but get rid of
the harmful ones?

• Recent research has begun examining ways to
debias word embeddings by:

• Transforming embedding spaces to remove
gender stereotypes but preserve definitional
gender

• Changing training procedures to eliminate these
issues before they arise

• Increasingly active area of study:
• https://facctconference.org

Natalie Parde - UIC CS 421 72

https://facctconference.org/

Summary:
Word

Embeddings

N
atalie Parde - U

IC
 C

S 421

• Cosine similarity, commonly used to calculate word vector similarity,
measures the distance between vectors by computing the normalized
dot product between them

• Word2Vec is a predictive word embedding approach that learns word
representations by training a classifier to predict whether a context
word should be associated with a given target word

• GloVe is a count-based word embedding approach that learns an
optimized, lower-dimensional version of a co-occurrence matrix

• Word embeddings can be evaluated through their incorporation in
other language tasks, and they can be used to model syntactic and
semantic properties of language over time

• Word embeddings may reflect the same biases found in the data used
to train them

73

This
Week’s
Topics

Natalie Parde - UIC CS 421 74

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Now that we
have more
advanced word
embeddings….

Are neural networks new?
1943: First

mathematical
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The
perceptron is

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

1971: Implementation
of feedforward network

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems,
Man, and Cybernetics, (4), 364-378.

1982: First
convolutional

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First
recurrent neural

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
Natalie Parde - UIC CS 421 76

Why haven’t
they been a
big deal until
recently
then?

• Data

• Computing power

Natalie Parde - UIC CS 421 77

There are many
types of neural
networks!

Feedforward
Neural
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all

units in layer n-1 and sends output to all
units in layer n+1

• A unit in layer n does not communicate
with any other units in layer n

• The outputs of all units except for those in
the last layer are hidden from external
viewers

Natalie Parde - UIC CS 421 79

Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

Natalie Parde - UIC CS 421 80

Feedforward Neural Networks

Input Output

Hidden layers

Computing units

Natalie Parde - UIC CS 421 81

Feedforward Neural Networks

Input

Data is fed forward
from input to the
first hidden layer

Output

Natalie Parde - UIC CS 421 82

Feedforward Neural Networks

Input Output

Data is fed forward from
the first hidden layer to
the second hidden layer

Natalie Parde - UIC CS 421 83

Feedforward Neural Networks

Input Output

Data is fed forward from
the second hidden layer
to the output unit

Natalie Parde - UIC CS 421 84

Feedforward Neural Networks

Input Output Class label

Natalie Parde - UIC CS 421 85

People often refer to multi-layer neural
networks as “deep learning.”

Input Output

Natalie Parde - UIC CS 421 86

Neural
networks tend

to be more
powerful than
feature-based

classifiers.

• Classification algorithms like naïve Bayes
and logistic regression assume that data is
linearly separable

• In contrast, neural networks learn nonlinear
ways to separate the data

Natalie Parde - UIC CS 421 87

Neural
networks
aren’t
necessarily
the best
classifier
for all
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network →
more data needed

Neural nets tend to work very well
for large-scale problems, but not
as well for small-scale problems

Natalie Parde - UIC CS 421 88

How do you build
a neural network?

89

Building
Blocks for

Neural
Networks

• Neural networks are comprised of
computational units

• Computational units:
1. Take a set of real-valued numbers as

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1

Natalie Parde - UIC CS 421 90

Computational
Units

• The computation performed by each unit is
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs
𝑥>, … , 𝑥?, a unit has a set of corresponding
weights 𝑤>, … , 𝑤? and a bias 𝑏, so the
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 +	∑@𝑤@𝑥@

Natalie Parde - UIC CS 421 91

Sound
familiar?

• This is exactly the same sort of weighted
sum of inputs that we needed to find with
logistic regression!

• Recall that we can also represent the
weighted sum 𝑧 using vector notation:

• 𝐳 = 𝐰 - 𝐱 + 𝑏

Natalie Parde - UIC CS 421 92

Computational
Units

• Neural networks apply nonlinear
functions referred to as activations to
the weighted sum of inputs

• The output of a computation unit is thus
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)

Natalie Parde - UIC CS 421 93

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid

Natalie Parde - UIC CS 421 94

There are many different activation
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression

Natalie Parde - UIC CS 421 95

Computational Unit with Sigmoid
Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Natalie Parde - UIC CS 421 96

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Natalie Parde - UIC CS 421 97

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 98

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 99

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 100

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 101

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒78.:; = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 102

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒78.:; = 0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 103

Example: Computational Unit with
Sigmoid Activation

x1

x2

1

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 104

Other Popular Activation Functions

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions

Natalie Parde - UIC CS 421 105

Activation:
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = F!GF"!

F!HF"!

• Larger derivatives → generally faster
convergence

Natalie Parde - UIC CS 421 106

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 107

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒< − 𝑒7<

𝑒< + 𝑒7<

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 108

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒8.:; − 𝑒78.:;

𝑒8.:; + 𝑒78.:; = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 109

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒8.:; − 𝑒78.:;

𝑒8.:; + 𝑒78.:; = 0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 110

Example: Computational Unit with
tanh Activation

x1

x2

1

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 111

Activation:
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute

Natalie Parde - UIC CS 421 112

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 113

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 114

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 115

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 116

Example: Computational Unit with
ReLU Activation

x1

x2

1

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g.,
averaged Word2Vec
embeddings for “beautiful,”
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

Natalie Parde - UIC CS 421 117

Comparing
sigmoid,
tanh, and
ReLU

Natalie Parde - UIC CS 421 118

This
Week’s
Topics

Natalie Parde - UIC CS 421 119

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Combining
Computational Units
• Neural networks are powerful

primarily because they can combine
multiple computational units into
larger networks

• Many problems cannot be solved
using a single computational unit

• Example: XOR

Natalie Parde - UIC CS 421 120

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

AND and OR can
both be solved
using a single
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value
based on whether the product of its inputs and
associated weights surpasses a threshold

𝑦 = 	 Q0, if	𝑤 S 𝑥 + 𝑏 ≤ 0
1, if	𝑤 S 𝑥 + 𝑏 > 0

Natalie Parde - UIC CS 421 121

It’s easy to
compute
AND and OR
using
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 -1

Natalie Parde - UIC CS 421 122

It’s easy to
compute
AND and OR
using
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if) * + + - ≤ 0
1, if) * + + - > 0

1

1

1 0

Natalie Parde - UIC CS 421 123

However, it’s
impossible to
compute XOR using
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Natalie Parde - UIC CS 421 124

The only successful way to compute XOR is by
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

ReLU

Natalie Parde - UIC CS 421 125

Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 126

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 127

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 128

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 129

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 130

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 131

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 132

Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

1

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

1

0

0

1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU

Natalie Parde - UIC CS 421 133

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 134

Why does this work?
• When computational units are combined, the outputs from each

successive layer provide new representations for the input
• These new representations are linearly separable

x1

x2

0

1XOR
x1 x2 y
0 0 0

0 1 1

1 0 1

1 1 0

XOR

h0 h1 y

0 0 0

1 0 1

2 1 0

h0

0 1

1

2

h1

Natalie Parde - UIC CS 421 135

Feedforward
Network

• Final formulation for previous network:
• h = ReLU 𝑊x + 𝐛
• 𝑦′ = ReLU 𝑈h + 𝐛

• This represents a two-layer feedforward
neural network

• When numbering layers, count the
hidden and output layers but not the
inputs

Natalie Parde - UIC CS 421 136

We can
generalize

this for
networks

with > 2
layers.

• Let W[n] be the weight matrix for layer n, b[n]
be the bias vector for layer n, and so forth

• Let 𝑔(-) be any activation function
• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]

Natalie Parde - UIC CS 421 137

Neural
Network:
Formal
Structure

• With this representation, a two-layer network
becomes:

• 𝑧[>] = 𝑊[>]𝑎[X] + 𝑏[>]

• 𝑎[>] = 𝑔 > 𝑧 >

• 𝑧[Y] = 𝑊[Y]𝑎[>] + 𝑏[Y]

• 𝑎[Y] = 𝑔 Y (𝑧 Y)
• 𝑦Z =	𝑎[Y]

• We can easily generalize to networks with
more layers:

• For i in 1..n
• 𝑧[@] = 𝑊[@]𝑎[@G>] + 𝑏[@]

• 𝑎[@] = 𝑔 @ (𝑧 @)
• 𝑦Z =	𝑎[?]

Natalie Parde - UIC CS 421 138

How do we train neural
networks?

qLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Natalie Parde - UIC CS 421 139

How do we train neural
networks?

üLoss function
qOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Cross-entropy loss

Natalie Parde - UIC CS 421 140

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

Gradient descent

Natalie Parde - UIC CS 421 141

How do we train neural
networks?

üLoss function
üOptimization algorithm
qSome way to compute the gradient across all of the

network’s intermediate layers

???

Natalie Parde - UIC CS 421 142

Backpropagation

• Propagates loss values all the way back to the
beginning of a neural network, even though it’s
only computed at the end of the network

• Why is this necessary?
• Simply taking the derivative like we did for

logistic regression only provides the
gradient for the most recent (i.e., last)
weight layer

• What we need is a way to:
• Compute the derivative with respect to

weight parameters occurring earlier in
the network as well

• Even though we can only compute loss
at a single point (the end of the
network)

Natalie Parde - UIC CS 421 143

Backpropagation
in a nutshell….

• Compute your loss at the final layer
• Propagate your loss backward using

the chain rule
• Given a function f(x) = u(v(x)):

• Find the derivative of u(x) with
respect to v(x)

• Find the derivative of v(x) with
respect to x

• Multiply the two together
• 9:
9;
= 9<

9=
∗ 9=
9;

• Update weights at each layer based on
this information

Natalie Parde - UIC CS 421 144

General Tips for
Improving Neural
Network Performance
• Initialize weights with small random numbers
• Tune hyperparameters

• Learning rate
• Number of layers
• Number of units per layer
• Type of activation function
• Type of optimization function

Natalie Parde - UIC CS 421 145

Fortunately, you shouldn’t need to build
your neural networks from scratch!

• https://www.tensorflow.org/

TensorFlow

• https://keras.io/

Keras

• https://pytorch.org/

PyTorch

• https://deeplearning4j.org/

DL4J

Natalie Parde - UIC CS 421 146

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://deeplearning4j.org/

This
Week’s
Topics

Natalie Parde - UIC CS 421 147

Tuesday

Cosine similarity
Word2Vec
Other dense embeddings
Using word embeddings

Thursday

Neural networks
Combining and optimizing
computational units
Neural language models

Neural
Language

Models

• Popular application of neural networks
• Advantages over n-gram language models:

• Can handle longer histories
• Can generalize over contexts of similar

words
• Disadvantage:

• Slower to train
• Neural language models make more

accurate predictions than n-gram language
models trained on datasets of similar sizes

Natalie Parde - UIC CS 421 148

Feedforward
Neural
Language
Model

• Input: Representation of some number of
previous words

• wt-1, wt-2, etc.
• Output: Probability distribution over possible

next words
• Goal: Approximate the probability of a word

given the entire prior context 𝑃(𝑤[|𝑤>[G>)
based on the n previous words

• 𝑃(𝑤[|𝑤>[G>) ≈ 𝑃(𝑤[|𝑤[G?H>[G>)

Natalie Parde - UIC CS 421 149

Neural Language Model

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

Natalie Parde - UIC CS 421 150

Neural Language Model

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

151

Neural Language Model

h1

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

152

Neural Language Model

h1

h2

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

153

Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

154

Neural Language Model

h1

h2

y1

…

“record”

…

y|V|

softmax
distribution over
all words in the
vocabulary

Natalie Parde - UIC CS 421

Natalie wt-4

sat wt-3

down wt-2

to wt-1

record wt

more wt+1

lectures wt+2

𝑃(𝑤= = “record”|𝑤=7* = “to”, 𝑤=76 = “down”, 𝑤=7> = “sat”)

155

Summary:
Feedforward
Neural
Networks

• Neural networks are classification models that
implicitly learn sophisticated feature
representations

• Feedforward neural networks are
comprised of interconnected layers of
computing units through which information is
passed forward from one layer to the next

• An activation function is a non-linear
function applied to the weighted sum of inputs
for a computing unit

• Computing units can be combined with
another to solve complex tasks

• Loss can be propagated backward through
the network from the output layer to earlier
layers using backpropagation

• Network architectures can be optimized via a
fine-tuning process

• Neural networks can be used to build neural
language models

Natalie Parde - UIC CS 421 156

